Baicells LTE Adds Halo B Support

HaloB is a feature that Baicells LTE introduced in February of 2018. Any Baicells eNodeB (eNB) can be purchased with or upgraded to HaloB through software feature activation. A HaloB eNB eliminates the transport layer between the Evolved Packet Core (EPC) and the eNB by embedding a “Lite EPC” directly on the eNB. Therefore, critical control plane signaling is kept local.

With HaloB installed, S1 (transport) failures are eliminated. This removes wireless PTP backhaul failures, fiber outages, or routing mistakes from causing customer service disruption. CloudCore is still available for OMC monitoring and upgrade functions, as well as the BOSS HSS functions. SIM card activation and bandwidth package assignment are still performed by the BOSS. Operators using the Baicells API for billing software integration will see no change. When a UE attempts to attach to a HaloB eNB, the HaloB contacts the BOSS to verify the IMSI is valid and active and collects the bandwidth packages. All information is downloaded to the HaloB memory bank. Once stored, the UE will remain attached indefinitely. In the event of an eNB or UE reboot, attachment only needs to check the local HaloB memory data for the UE to reattach.

SIM card IMSIs can attach to multiple HaloB eNBs, and each will store the SIM data for future attachments. In the event of a rare CloudCore outage, new installs may not be able to attach during the outage if the SIM data has never been downloaded from the BOSS before. This is not a mission-critical event in most cases and once the CloudCore connection is resumed, the HaloB eNB will collect the SIM data for the new install and commence attachment.

With HaloB:

  • Operators entering the world of fixed LTE wireless have a lower initial investment.
  • The simplified structure means there is no need for professional design and maintenance.
  • The self-configuration, plug-and-play deployment model means a shorter time-to-market (TTM) and faster return-on-investment (ROI).
  • Operators can provide a Layer 2 environment for SMEs and LAN gaming.
  • The eNBs and the core network functions are decoupled.
  • The control plane is processed within HaloB; user equipment will always be online.

What does Halo B Cost?

Per eNodeB: BAICELLS-HALOB-1 $249.99
Per 10 eNodeB’s: BAICELLS-HALOB-10 $1999.99.

Ready to add Halo B?  Now in stock at ISP Supplies HERE.


Source: Blog

Baicells LTE Adds Halo B Support

HaloB is a feature that Baicells LTE introduced in February of 2018. Any Baicells eNodeB (eNB) can be purchased with or upgraded to HaloB through software feature activation. A HaloB eNB eliminates the transport layer between the Evolved Packet Core (EPC) and the eNB by embedding a “Lite EPC” directly on the eNB. Therefore, critical control plane signaling is kept local.

With HaloB installed, S1 (transport) failures are eliminated. This removes wireless PTP backhaul failures, fiber outages, or routing mistakes from causing customer service disruption. CloudCore is still available for OMC monitoring and upgrade functions, as well as the BOSS HSS functions. SIM card activation and bandwidth package assignment are still performed by the BOSS. Operators using the Baicells API for billing software integration will see no change. When a UE attempts to attach to a HaloB eNB, the HaloB contacts the BOSS to verify the IMSI is valid and active and collects the bandwidth packages. All information is downloaded to the HaloB memory bank. Once stored, the UE will remain attached indefinitely. In the event of an eNB or UE reboot, attachment only needs to check the local HaloB memory data for the UE to reattach.

SIM card IMSIs can attach to multiple HaloB eNBs, and each will store the SIM data for future attachments. In the event of a rare CloudCore outage, new installs may not be able to attach during the outage if the SIM data has never been downloaded from the BOSS before. This is not a mission-critical event in most cases and once the CloudCore connection is resumed, the HaloB eNB will collect the SIM data for the new install and commence attachment.

With HaloB:

  • Operators entering the world of fixed LTE wireless have a lower initial investment.
  • The simplified structure means there is no need for professional design and maintenance.
  • The self-configuration, plug-and-play deployment model means a shorter time-to-market (TTM) and faster return-on-investment (ROI).
  • Operators can provide a Layer 2 environment for SMEs and LAN gaming.
  • The eNBs and the core network functions are decoupled.
  • The control plane is processed within HaloB; user equipment will always be online.

What does Halo B Cost?

Per eNodeB: BAICELLS-HALOB-1 $249.99
Per 10 eNodeB’s: BAICELLS-HALOB-10 $1999.99.

Ready to add Halo B?  Now in stock at ISP Supplies HERE.

Transitioning the WISP to Telrad LTE

The number one concern I have heard thus far before we transition a select group of WISPs (Wireless Internet Service Providers) from WiFI or TDMA to LTE is “How can I afford LTE?” and the question is valid.  The costs are high, very high, astronomically high in fact when compared to the “disruptively priced” gear from others we have enjoyed and loved in the past.  My response to the question “How can I afford Telrad Networks LTE?” is really another question and that is “How can I NOT afford Telrad LTE?”

Think about it this way.  When I was a full time WISP operator, we kept careful stats on the number of calls for service versus the number of installs.  I am not talking about tire kicker calls, I mean people that called, credit card in hand wanting to buy what we were selling. We found that we were only serving 20% of those qualified customers and losing 80%. Seriously, qualified customers, ready to read you their credit card number and close the deal today and agree to pay you every month, same day, same amount, and we had to tell them no 80% of the time?  Why?

Well, I can tell you it was not because we had a line of sight problem, it was because our WiFI and TDMA unlicensed equipment had a line of sight problem.  You see, what had happened is we accepted the shortcomings of the technology and began to believe LOS (line of sight) was the ONLY way.

Fortunately all that has changed and Telrad is leading the charge.  All that remains is a path to take the same gear our competitors, the big cell carriers have relied upon to take our customers, equipment that doesn’t have a LOS problem, and “WISPatize” it.  That is exactly what Telrad is doing.

We are WISPs and we know how to do what others won’t, or can’t or don’t understand and that is serve the unserved and underserved with the most cost effective, creative method we can.

So, as we evolve into the WISPatized LTE model, here’s another way to start small and transition into something huge.   Think about it like this, when you make the switch to LTE, even starting small and begin to crush your competitor’s LOS solution, you will take his customers and the revenue increase will fund the transition of the remainder of your LOS network to NLOS.

In that vein, here’s a solution to get you started small at first and the best part is it doesn’t involve an omini!  It allows nearly 360 degree coverage day one with only one base station radio and two sectors.  Understand it has some shortcomings:

  1. It is not 100% true 360 degree coverage, after all we are using two 65 degree sectors that provide up to 120 degrees of coverage, not 180 degrees.  There will be two pie shaped gaps, but those will get filled soon enough.  Be smart, position those gaps facing an uninhabited prairie or forest.
  2. This solution is not without signal loss.  Splitting the 4×4 MIMO into two 2×2 MIMO sectors will cost you 3 dB of signal.  That’s a lot, I get that.  Remember the rule of 3’s in RF theory?  Every 3 dB doubles your power, remove 3dB and halve your power.

The advantage here is that day one, one base station, two antennas and you have great close-in coverage with antennas you will reuse for Phase II.

One base station, two sectors, 2×2 MIMO

Sectors2

Phase II is to add a second BST and increase your range incrementally and fill the entire 360 degree area with no more gaps.

Two base stations, four sectors, 2×2 MIMO

Sectors2-4

Phase III is to add one or two more BST’s.  With 3 BST’s you are now full 4x MIMO, get back your lost 3 dB, increase your range and increase your density.

Four base stations, four sectors, 4×4 MIMO

Sectors44a

With 4 BST’s you will be able to increase your number of subs on this single tower to something approaching 400 depending on your bandwidth packages.

It’s not a perfect plan but it will work and that’s what WISPs do, make it work.  I hope this helps increase your knowledge and gets the creative juices flowing to transform your WISP into the next generation.